
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Controlling a Robotic Arm using a DE1-SoC FPGA

Board

Jack Gladowsky

Department of Computer Engineering

Northeastern University

Gladowsky.j@northeastern.edu

Abstract - This paper presents a way to control a 5 degree of

freedom robotic arm using an FPGA development board. The arm

is made up of five servo motors that are controlled using pulse-

width modulation (PWM). We built a circuit in Quartus Prime

that let the user set the robot arms initial and final positions using

switches and buttons. The user then flips the last switch which tells

the robot to go back and forth between the two positions until told

to stop. The goal of this paper is to program a robotic arm that can

sit next to an assembly line and pick up and place down different

components automatically. In this paper, we simulated the robotic

arm picking up and placing down a plastic water bottle.

Keywords—Pulse-width Modulation, FPGA, Robot-Arm,

Quartus

I. INTRODUCTION

 As the world becomes more and more automated, robotic

arms are being found in more and more places. Robot arms are

controlled by different types of motors, with some examples

being stepper motors and a servo motors. The robotic arm that

was used in this paper was controlled by servo motors. We

controlled the servos using PWM. PWM is a technique that

changes the period of an electronic pulse, and the modulation

part is switching the pulse state on and off. Doing this means

that’s the motor is being turned on and off rapidly and because

the servo can’t handle the quick changes, the motor results in

being turned on for a certain length of time based on how quick

the pulse state changes.

 In this paper, we designed the controller for the robotic arm

using Quartus Schematic 18.1 and then uploaded it onto a DE1-

SoC FPGA development board. The DE1-SoC has a FPGA

processor and an ARM processor, which means we can do both

FPGA and embedded development using Linux all on the same

board. The Quartus software lets us program the FPGA

processor on the board using different logic blocks.

 The arm we used during this project was a 5 degree of

freedom arm, that was built by a previous class. We were

provided with a simple circuit that when connected to the robot

arm, would make the arm stand up at 90 degrees. We used this

circuit as the basis for controlling and loading the positions of

the arm. The user was able to change which part of the arm they

were controlling by flipping a switch, and they could move that

position using two buttons. When the user had the arm at the

correct position to pick up a bottle, the user then flipped up

another switch which saves the arms position. The user then

moves the arm to where it should drop the bottle, and the user

flips another switch to save that position. Finally, the user flips

the last switch which makes the robot go back and forth

between the two saved positions, repeatedly picking up and

placing down water bottles.

II. ALGORITHM IMPLEMENTATION

A. Pulse-Width Modulation

 PWM is the basis of the entire project. To move the arm, we

must first understand how PWM works. The main way to

control PWM is by controlling the duty cycle. A duty cycle is

the ratio of how often the pulse state changes, and the period of

the pulse. If the state changes many times within the period, this

results in the motor moving in a certain direction. If the duty

cycle is high, the robot should move clockwise, and vice versa

when it is low. To implement this using Quartus, we have a

modulus counter that goes up to 3,500. The 25-bit output from

this counter goes into a comparator that gives out a signal when

the counter is 1. Since the clock on the board is a 50 MHz clock,

this means that a one will be output every .00007 seconds. The

output of the comparator then feeds into another modulus

counter clock. This counter goes up to 75,000, which is the

value that we found makes the robot arm stand straight up.

There is another counter that counts to 1 million repeatedly.

These two counters feed into a comparator which outputs when

the value of the million counter is less than the 75,000 counter.

Fig. 1 shows a flow chart of the entire PWM process

implemented using Quartus

Figure 1. PWM Control in Quartus

B. Robot Arm Input

 Once the robot successfully stood straight up when the

board was turned on and programmed with the circuit, we had

to figure out how to control each servo on its own to set the

initial and final positions of the arm. The implementation that

we decided on was to have only two buttons that would control

the direction of each arm. We then had five different switches

that corresponded to each of the servo motors. When a servos

switch was on, the user was able to move the arm only at the

specified servos. We implemented the previous logic by having

a D-Flip-Flop for each button. The clock input for the D-Flip-

Flop was a comparator that had a counter input that only

counted from 0 to 1. This counter was only enabled when a

specific servos switch was flipped to on. The comparator then

sent out a signal whenever the counter was at 1. This circuit was

then replicated five times, one for each servo. When a specific

servos switch was flipped on, the counter would enable which

means that the user could then move that servo using the

switches. Fig. 2 shows the circuit that is used for each servo.

Figure 2. Servo Control Circuit

C. Debounce-Pulse Module

 Now that we were able to handle the inputs from switches

and buttons, we had to implement this into the PWM controller

from figure 1. We did this by adding a enable to the two

counters in the PWM controller. The outputs from the 2 flip-

flops fed into a logic block that represented a debounce-p

module. This module would read the input and put out a pulse

signal because buttons are too unreliable to send a steady signal.

Fig. 3 shows the debounce p circuit in Quartus. Figure 3.

Debounce-P Circuit

Figure 3. Debounce-P Circuit

D. Servo Control Module with User Input

 Each pulse module goes into an XOR gate which will only

output when one of the buttons are pressed. The XOR gate then

feeds into the count enable in the PWM controller. Now when

a servos switch is up, the user can move that servo using the

two buttons, and the movement will be smooth due to the

debounce p. Fig. 4 is the updated control module that now has

a count enable.
Figure 4. User Input Servo Control Circuit

E. Storing Arm Positions

 Now that the user can move the robot arm along its 5 degrees

of freedom, we had to figure out a way to save and load the

initial and final positions. We came up with a 26-bit counter

that has an asynchronous load and count enable input. These

two inputs were connected to the initial and final position save

switches. When one of the switches was flipped on, the current

position of the arm would be saved into that counter. The enable

count input was connected to a ground so that way the counter

would never count. We had two counters for every servo motor,

one for the initial and one for the final positions. We got the

data to be stored from the PWM controller. We saved the output

of the 75000 counters into the saved position counters. Fig. 5 is

a representation of how we stored data and loaded it into the

arm.

Figure 5. Position Store Counter

F. Position Control Multiplexer

 Once the two positions were successfully stored, we had to

implement a way to load the positions to the robot

automatically. We finally found a way that was simple to

implement, and easily changeable. To come up with the

solution, we had to think about each servo individually. More

specifically, what should every servo position be while the

robot is moving between positions. Using that question, we

figured that the transition between positions could be done in 8

steps. First the arm starts straight up. Second it turns to face the

bottle. Third it lowers the arm to the bottle. Fourth it closes the

grip around the bottle. Fifth it raises the arm up a bit. Sixth it

turns the arm to the position it wants to drop the bottle at.

Seventh it lowers the arm. Eighth it releases the grip on the

bottle, setting it down on the table. Once we had these eight

steps, we were able to figure out what each servos position

should be at every step in the algorithm. We used an 8 to 1

multiplexer block to accomplish this in Quartus. Fig. 6 is a

picture of one of the five multiplexers used. The input at the

bottom is used for the buffer counter which is explained in the

next paragraph.

Figure 6. Position Load MUX

G. Buffer Counter

 The way we selected which position was currently being

used was by setting up a buffer counter. A buffer counter is two

counters and a comparator. The first counter counts to 45

million repeatedly. The output of that is fed into a comparator

which only outputs a signal when the counter is at 1. The

comparator will output a 1 every 0.9 seconds. This output then

goes into a counter that goes from 0 to 7 repeatedly. This buffer

counter will count from 0 to 7 in 7.2 seconds which means that

a cycle of the robot arm to pick up and place down a bottle takes

7.2 seconds. A diagram of the buffer counter is shown in Fig.

7.

H. Final Servo Controller

 We now have a way to store and load the data in the proper

order. To connect everything together and make it run

smoothly, we took the output of the mux and the output of the

PWM controller into a two to one mux. This is connected to the

9th switch which is the start switch. While this switch is down,

the user can move the arm freely using the controls. When the

switch is up, the robot arm will move between the initial and

final positions until the switch is flipped down again. The

output of the MUX goes into a comparator that checks to see

when this number is lower than a million counter. The output

of the comparator then goes to the servo motor. Fig. 8 shows

the implementation of the final controller in Quartus.

Figure 7. Buffer Counter Chart

Figure 8. Movement Controller Circuit

III. RESULTS

 We conducted tests of the program on a robot arm with 5

degrees of freedom. The arm consisted of 5 different servos,

and we referred to each arm as a part of a human arm. Figure 9

refers to the robotic arm and labels each servo with the name

used in red.

Figure 9. Robot Arm with Servos Labelled

A. User Interaction

 The user turns on the robot using a switch on its base, and

then they can control the robot using the switches and buttons

on the DE1-SoC. Using the implementation in Fig. 3, the user

can manually control the robot using the switches and buttons.

The first five switches are connected to a servo on the robot

starting from the base on the right and going to the grip fifth

from the right. The user can then use the first two buttons to

turn the servo. The user would move the robot to the initial

position, then flip the 7th switch which saves that position.

Then they would move the robot to the final position and flip

the 8th switch. Once the two positions are saved, the user can

flip switch seven and the robot arm will automatically go

between the two positions, picking up and placing down the

bottle until flip 9 is switches off.

B. Algorithim Limitations

 Throughout the design process of the circuit, we ran into a

few limitations and problems. The first big limitation to our

implementation is by using a multiplexer to control the

movement of the arm between positions. When testing first

started for this implementation, we found that the arm would go

back to straight up 2 times during the process. The first time is

when the arm grips the bottle and then raises straight up so it

can rotate towards the second position. The second time is when

the arm releases the bottle and then raises straight up to pick up

another bottle. The problem with the arm raising straight up is

that when it lowers the arm, the arm basically goes into a

freefall and then stops at the position it’s supposed to be at.

Since the arm is moving so quickly, it over rotates past its

stopping point and then snaps back up to the stopping point.

When it over rotates, the arm hits the table very hard which will

either knock the bottle out of the way or knock the bottle out of

the arm's grip. To fix this, we figured that we could have a sort

of buffer position in between the arm going from straight up to

straight down. The arm would stop about 2/3 the way to the

stopping position, and then it would proceed to the stopping

position. Fig. 10 shows a diagram of the positions and values

that make up the multiplexer’s inputs.

Figure 10. Position Input Diagram

C. Constant Blocks

We used constant blocks to create the buffer positions.

These are blocks that just output a certain number in binary

constantly. Fig. 11 shows a constant block with a value of fifty

thousand, and the output is 26-bits wide.

Figure 11. Constant Block in Quartus

D. Control Switching Logic

Another problem that we ran into was how to control the

robot arm manually, and then make it move automatically. Our

solution to this was to use a 2 to 1 multiplexer. We took in the

output from the PWM motor controller and the output of the 8

to 1 multiplexer. When switch 9 is off, the multiplexer outputs

the first input, and when it’s flipped on it outputs the second

input. As switch 9 is hooked up to the count enable for the

buffer counter also, these two things combined tell the robot

arm to move between the two positions. Fig. 12 shows the

multiplexer that is used to change between user and

automatically controlled.

Figure 12. Position Chooser MUX

E. Algorithm Improvements

While implementing the fix for the arm slapping down on

the table, we found that using constant blocks to set positions

for the arm was very intuitive and improved the ability to

understand what the circuit is doing. Because we knew the

dimensions of the water bottle that would be on the “assembly

line”, we were able to set a lot of the servos to constant positions

during the process. Along with the constants used in the fix, we

also added constants for the elbow and wrist throughout the

process. We did this because during testing we found that if the

wrist and elbow positions were moved, the bottom of the water

bottle would not always be parallel to the top of the table. If we

kept the arm straight and just bended it at the shoulder, the

bottle would stay parallel meaning a better chance for the arm

to place the bottle down without it tipping over. The only

positions that were being loaded from the saved positions were

the initial and final base and arm height positions.

Another improvement to the program was outputting the

buffer counter to a seven-segment display. This helped with

debugging the code during testing as we could see which

position the robot arm was currently at. By seeing what

position, the arm was at, we could tell when a certain position

had to be adjusted. We were able to change the values of the

constant blocks to adjust the positions of the arm at each servo.

We were able to use a seven-segment decoder that we had built

in a previous lab to display the output from the counter. Fig. 13

shows the seven-segment decoder block. The outputs of the

multiplexer correspond to a certain segment of the display.

IV. CONCLUSION

 This paper presented our implementation of a controller for

a robotic arm. We implemented our circuit using the FPGA chip

in the DE1-SoC board. We used Quartus Schematic 18.1 to

design our circuit, and then used the same program to upload it

to the board. We can simplify the circuit down to a few main

portions. First the servo controller which is shown in Fig. 1.

Then how the user can move the arm in Fig. 2. Then we

implemented a way to store and load different positions into the

arm which is shown in Fig. 6 and Fig. 10.

 Using our implementation, we were successfully able to

move our robot arm using the buttons and switches on the

board. We were also able to store and load the initial and final

positions that the robot arm would be moving to when picking

up and placing down the bottle.

ACKNOWLEDGEMENTS

 We would like to thank Professor Marpaung for helping us

learn all the material to complete this paper. We also want to

thank the TAs for the embedded design class for helping answer

questions that We had during the paper.

REFERENCES

[1] Prof. Julius Marpaung, “Quartus Schematic

Introduction”, Northeastern University, Spring 2021.

[2] Terasic, “DE1 – SoC User Manual”, January 28, 2019.

[3] I. E. E. E. Journal, “Conference Letter Template.”

 Figure 13. Seven-Segment Decoder Block

